Bioinformatics scientist (degree) (level 7)
There are 2 training providers who offer this course.
Information about Bioinformatics scientist (degree) (level 7)
Specialists who use computational, data analytical and data mining techniques which are applied to a range of problems in the life sciences.
- Knowledge, skills and behaviours
-
View knowledge, skills and behaviours
Knowledge
- A topic aligned with the life science field, and the core experimental platform/data generating technologies in the chosen field.
- How research is conducted in bioinformatics and within the broader context of interdisciplinary life sciences.
- The technical limitations and the underlying biological and experimental assumptions that impact on data quality.
- Details of omic-scale/big-data-driven life science making use of core platform technologies.
- The responsibilities of working in production/industry environments managing scientific data – including regulated environments (good practice, and IP/confidentiality requirements).
- Current approaches for modelling and warehousing of life science data.
- Requirements for responsible, legal or ethical access and use of biological data, including general data protection (GDPR) considerations, identifiable personal genomic & healthcare data, and geographic biodiversity-related data concerns.
- Ontologies and their use.
- Retrieval and manipulation of biological data, including data mining, from public repositories.
- Techniques to integrate, interpret, analyse and visualise biological data sets.
- Bioinformatics analysis methodologies and expertise in common bioinformatics software packages, tools and algorithms – including workflow management tools.
- Common bioinformatics programming languages; algorithm design, analysis and testing.
- The use of suitable version control tools, software sustainability practices and open source software repositories.
- Licensing limitations on the use of bioinformatics software and data such as open source, commercial and academic usage restrictions.
- Database design and management, including information security considerations and big-data technologies.
- Relevant big-data and high performance computing platforms including Linux/Unix, local and remote High Performance Computing (HPC), and cloud computing.
- Application of statistics in the contexts of bioinformatics and life science data analysis.
- Statistical and mathematical modelling methods, and key scientific and statistical analysis software packages.
- General data science approaches to life science problems, such as machine learning and artificial intelligence (AI).
- The importance of data governance, curation, information architecture and ensuring interoperability.
- Differences in the knowledge-base of diverse audiences, and the most appropriate means of effectively communicating scientific and technical information.
- Communication models and techniques which can be employed in a collaborative research environment to effect change at individual, team and organisational level eg. active listening skills, teamworking, influencing and negotiation skills.
Skills
- Work with multi-disciplinary colleagues to design life-science experiments that will generate data suitable for subsequent bioinformatics analysis.
- Provide guidance to experimental scientists on data generation methodology and handling to ensure the quality of data produced.
- Recognise and critically review the format, scope and limitations of different biological data.
- Define the required metadata to be collected for specific datatypes and analytical approaches.
- Design and implement appropriate data storage formats and associated database structure.
- Choose appropriate computational infrastructure and database solutions - including internal or external/cloud resources.
- Store and analyse data in accordance with ethical, legal and commercial standards, including checking who has access.
- Curate biological data using suitable metadata, ontologies and/or controlled vocabularies.
- Make use of suitable programming languages and/or workflow tools to automate data handling and curation tasks.
- Maintain a working knowledge of a range of public data repositories for biological data.
- Prepare data for submission to appropriate public bioinformatics data repositories as required, being aware of IP and/or ethical and legal issues.
- Carry out data pre-processing and quality control (QC) to prepare datasets for bioinformatics analysis.
- Determine the best method for bioinformatics analysis, including the selection of statistical tests, considering the research question and limitations of the experimental design.
- Identify and define appropriate computing infrastructure requirements for the analysis of such biological data.
- Apply a range of current techniques, skills and tools (including programming languages) necessary for computational biology practice – and;
- Contribute to (where appropriate, lead) research to develop novel methodology.
- Build and test analytical pipelines, or write and test new algorithms as necessary for the analysis of biological data.
- Document all data processing, analysis and implementation of new methods in accordance with good scientific practices and industry requirements for regulatory process and IP.
- Interpret the results of bioinformatics analysis in the context of the experimental design and, where necessary, in a broader biological context through integration with complementary (often public) data.
- Obtain data sets from private and/or public resources – considering any legal, privacy or ethical aspects of data use.
- Carry out the analysis of biological data using appropriate programmatic methods, statistical and other quantitative and data integration approaches – and visualise results.
- Communicate and disseminate bioinformatics analysis and results to a range of audiences, including multi-disciplinary scientific colleagues, non-scientific members of management, external collaborators and stakeholders, grant/funding bodies and the public as required.
- Supervise and mentor colleagues and peers to develop bioinformatics knowledge relevant to their specific life science subject experience.
- Communicate orally and in writing, and collaborate effectively with interdisciplinary scientific colleagues, and management functions to monitor and manage people, processes or teams.
- Manage their own time through preparation and prioritisation, time management and responsiveness to change.
Behaviours
- Professional standards in the workplace in relation to: ethics and scientific integrity, legal compliance and intellectual property, respect and confidentiality, and health and safety.
- The need to continuously develop their knowledge and skills in relation to scientific developments that influence their work, ensuring they continue to provide relevant analyses, including emerging techniques where appropriate.
- The ongoing need for awareness of technical advances in the broader scientific field that may present opportunities for personal and / or organisational development.
- The wider context (policy, economic, societal, technological, legal, cultural and environmental) in which scientific research operates, recognising the implications for professional practice.
- The need to be enthusiastic, self-confident, self-aware, empathic, reliable and consistent to operate effectively in the role.
- The requirement to persevere, have integrity, be prepared to take responsibility, to challenge areas of concern, to lead, mentor and supervise.
- Apprenticeship category (sector)
- Health and science
- Qualification level
-
7
Equal to master’s degree - Course duration
- 30 months
- Funding
-
£18,000
Maximum government funding for
apprenticeship training and assessment costs. - Job titles include
-
- Bioinformatician
View more information about Bioinformatics scientist (degree) (level 7) from the Institute for Apprenticeships and Technical Education.