Data scientist (integrated degree) (level 6)
Working in a team to find ways to improve an organisation's processes.
- Qualification level
-
6
Equivalent to degree. - Typical duration
- 36 months
- Apprenticeship category
- Digital
- Maximum funding
-
£19,000
Maximum amount government will fund
for apprenticeship training. - Also known as
-
- Data Engineer
- Data Scientist
- Informatics
- Skills
-
Skills an apprentice will learn
- Identify and clarify problems an organisation faces, and reformulate them into Data Science problems. Devise solutions and make decisions in context by seeking feedback from stakeholders. Apply scientific methods through experiment design, measurement, hypothesis testing and delivery of results. Collaborate with colleagues to gather requirements.
- Perform data engineering: create and handle datasets for analysis. Use tools and techniques to source, access, explore, profile, pipeline, combine, transform and store data, and apply governance (quality control, security, privacy) to data.
- Identify and use an appropriate range of programming languages and tools for data manipulation, analysis, visualisation, and system integration. Select appropriate data structures and algorithms for the problem. Develop reproducible analysis and robust code, working in accordance with software development standards, including security, accessibility, code quality and version control.
- Use analysis and models to inform and improve organisational outcomes, building models and validating results with statistical testing: perform statistical analysis, correlation vs causation, feature selection and engineering, machine learning, optimisation, and simulations, using the appropriate techniques for the problem.
- Implement data solutions, using relevant software engineering architectures and design patterns. Evaluate Cloud vs. on-premise deployment. Determine the implicit and explicit value of data. Assess value for money and Return on Investment. Scale a system up/out. Evaluate emerging trends and new approaches. Compare the pros and cons of software applications and techniques.
- Find, present, communicate and disseminate outputs effectively and with high impact through creative storytelling, tailoring the message for the audience. Use the best medium for each audience, such as technical writing, reporting and dashboards. Visualise data to tell compelling and actionable narratives. Make recommendations to decision makers to contribute towards the achievement of organisation goals.
- Develop and maintain collaborative relationships at strategic and operational levels, using methods of organisational empathy (human, organisation and technical) and build relationships through active listening and trust development.
- Use project delivery techniques and tools appropriate to their Data Science project and organisation. Plan, organise and manage resources to successfully run a small Data Science project, achieve organisational goals and enable effective change.
Full information on Data scientist (integrated degree) (level 6) is available from the Institute for Apprenticeships and Technical Education.